organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methylenebis(phosphonic difluoride)

Steffen Blaurock,^a Axel Fischer,^a Reinhard Schmutzler^b and Frank T. Edelmann^a*

^aChemisches Institut der Otto-von-Guericke-Universität, Universitätsplatz 2, D-39116 Magdeburg, Germany, and ^bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany

Correspondence e-mail: frank.edelmann@ovgu.de

Received 10 July 2007; accepted 12 July 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean $\sigma(P-C) = 0.002$ Å; R factor = 0.028; wR factor = 0.075; data-to-parameter ratio = 21.5.

The crystal structure of the title compound, $CH_2F_4O_2P_2$, is characterized by an extensive net of C-H···O hydrogen bonds.

Related literature

For related literature, see: Althoff et al. (1981); Maier (1965); Matczak-Jon et al., (2005); Richard et al. (1961); Sheldrick (1975).

Experimental

Crystal data

 $CH_2F_4O_2P_2$ $M_r = 183.97$ Orthorhombic, Pna21 a = 16.975 (2) Å b = 5.2277 (6) Å c = 12.9176 (14) Å

Data collection

Bruker SMART 1000 CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1997) $T_{\min} = 0.733, \ T_{\max} = 0.907$

V = 1146.3 (2) Å³ Z = 8Mo $K\alpha$ radiation $\mu = 0.77 \text{ mm}^{-1}$ T = 173 (2) K 0.43 \times 0.27 \times 0.13 mm

18754 measured reflections 3500 independent reflections 3205 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.029$

Refinement

H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.57 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.54 \ {\rm e} \ {\rm \AA}^{-3}$
Absolute structure: Flack (1983),
with 1672 Friedel pairs
Flack parameter: -0.03 (8)

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$C2-H2A\cdots O1$	0.99	2.41	3.151 (2)	131
$C2-H2A\cdots O2^{i}$	0.99	2.47	3.286 (3)	140
$C2-H2B\cdots O3^{i}$	0.99	2.44	3.214 (2)	135
$C2-H2B\cdots O1^{i}$	0.99	2.67	3.428 (2)	134
$C2-H2B\cdots F4^{ii}$	0.99	2.76	3.429 (2)	125
$C1-H1A\cdots O4^{iii}$	0.99	2.42	3.200 (2)	135
$C1 - H1A \cdots O2^{i}$	0.99	2.58	3.286 (2)	128
$C1-H1A\cdots F6^{iv}$	0.99	2.71	3.404 (3)	128
$C1 - H1B \cdot \cdot \cdot O3^{v}$	0.99	2.46	3.310 (3)	144
$C1 - H1B \cdots O4^{v}$	0.99	2.56	3.298 (2)	131

Symmetry codes: (i) x, y + 1, z; (ii) $-x + 1, -y + 1, z - \frac{1}{2}$; (iii) $x + \frac{1}{2}, -y + \frac{3}{2}, z$; (iv) $-x + 1, -y + 1, z + \frac{1}{2}; (v) x + \frac{1}{2}, -y + \frac{1}{2}, z.$

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXTL-Plus (Bruker, 1998); molecular graphics: SHELXTL-Plus; software used to prepare material for publication: SHELXTL-Plus.

Support of this work by the Otto-von-Guericke-Universität Magdeburg is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2436).

References

- Althoff, W., Fild, M. & Schmutzler, R. (1981). Chem. Ber. 114, 1082-1090. Bruker (1998). SMART, SAINT and SHELXTL-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Maier, L. (1965). Helv. Chim. Acta, 48, 133-142.
- Matczak-Jon, E., Videnova-Adrabínska, V., Burzynska, A., Kafarski, P. & Lis, T. (2005). Chem. Eur. J. 11, 2357-2372
- Richard, J. J., Burke, K. E. J. W., O'Laughlin, J. W. & Banks, C. V. (1961). J. Am. Chem. Soc. 83, 1722-1726.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.
- Sheldrick, W. S. (1975). J. Chem. Soc. Dalton Trans. pp. 943-946.

supplementary materials

Acta Cryst. (2007). E63, o3496 [doi:10.1107/S1600536807034046]

Methylenebis(phosphonic difluoride)

S. Blaurock, A. Fischer, R. Schmutzler and F. T. Edelmann

Comment

Bis(phosphonates) form an interesting class of hydrolytically stable analogues of pyrophosphate, in which the bridging oxygen atom is replaced by a methylene group or a substituted methylene group. Several members of this class have been employed as therapeutic agents for the treatment of bone disorders such as hypercalcemia of malignancy, osteoporosis, and Paget's disease. Other bis(phosphonates) have been shown to be potent antiparasitic agents or herbicides (Matczak-Jon *et al.*; 2005, and references cited therein). The corresponding bis(phosphonicdichlorides) such as $CH_2(POCl_2)_2$ are known since 1961 (Richard *et al.*, 1961; Maier *et al.*, 1965). The crystal structure of $CH_2(POCl_2)_2$ was determined by Sheldrick (1975). Althoff *et al.* (1981) first reported the preparation and spectroscopic characterization of the corresponding fluoride, *i.e.* the title compound methylene-bis(phosphonicdifluoride), $CH_2(POF_2)_2$. Large, clear, colorless crystals (up to 2 cm in length) originating from the original work published in 1981 were found to be of excellent quality for X-ray diffraction. The crystal structure of the title compound is characterized by an extensive net of C—H···O hydrogen bonds.

Experimental

Large, clear, colorlesss crystals originating from the early work by Althoff et al. (1981) were used in this study.

Refinement

Refinments based on F² (SHELXL97), H atoms are refined in rinding models.

Figures

Fig. 1. The molecule of the title compound in the crystal. Thermal ellipsoids represent 50% probability levels.

Fig. 2. The hydrogen-bonded network of the title compound in the crystal.

Methylenebis(phosphonic difluoride)

Crystal data	
$CH_2F_4O_2P_2$	$F_{000} = 720$
$M_r = 183.97$	$D_{\rm x} = 2.132 {\rm Mg m}^{-3}$
Orthorhombic, <i>Pna</i> 2 ₁	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2 c -2 n	Cell parameters from 5368 reflections
a = 16.975 (2) Å	$\theta = 2.8 - 30.5^{\circ}$
b = 5.2277 (6) Å	$\mu = 0.77 \text{ mm}^{-1}$
c = 12.9176 (14) Å	T = 173 (2) K
$V = 1146.3 (2) \text{ Å}^3$	Plate, colourless
<i>Z</i> = 8	$0.43 \times 0.27 \times 0.13 \text{ mm}$

Data collection

Bruker SMART 1000 CCD area-detector diffractometer	3500 independent reflections
Radiation source: fine-focus sealed tube	3205 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.029$
Detector resolution: 8.192 pixels mm ⁻¹	$\theta_{max} = 30.5^{\circ}$
T = 173(2) K	$\theta_{\min} = 2.4^{\circ}$
ω scans	$h = -24 \rightarrow 24$
Absorption correction: multi-scan (SADABS; Sheldrick, 1997)	$k = -7 \rightarrow 7$
$T_{\min} = 0.733, T_{\max} = 0.907$	$l = -18 \rightarrow 18$
18754 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites			
Least-squares matrix: full	H-atom parameters constrained			
$R[F^2 > 2\sigma(F^2)] = 0.028$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0533P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$			
$wR(F^2) = 0.076$	$(\Delta/\sigma)_{max} < 0.001$			
<i>S</i> = 1.05	$\Delta \rho_{max} = 0.57 \text{ e } \text{\AA}^{-3}$			
3500 reflections	$\Delta \rho_{min} = -0.54 \text{ e } \text{\AA}^{-3}$			
163 parameters	Extinction correction: none			
1 restraint	Absolute structure: Flack (1983), with 1672 Friedel pairs			
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.03 (8)			

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
P1	0.55572 (3)	0.28344 (8)	0.60836 (4)	0.02034 (12)
P2	0.55486 (3)	0.02274 (8)	0.81045 (4)	0.02008 (10)
P4	0.30379 (3)	0.79236 (8)	0.76166 (4)	0.02068 (11)
P3	0.30600 (3)	0.54835 (8)	0.55714 (4)	0.01888 (10)
F2	0.59439 (9)	0.5203 (2)	0.56183 (12)	0.0347 (3)
F3	0.49330 (9)	0.1952 (2)	0.86152 (13)	0.0327 (3)
F7	0.33664 (9)	1.0365 (2)	0.80986 (13)	0.0354 (3)
F5	0.24222 (8)	0.7124 (2)	0.50573 (12)	0.0323 (3)
O3	0.27660 (9)	0.3092 (2)	0.59923 (13)	0.0248 (3)
F4	0.61055 (8)	-0.0141 (2)	0.90233 (10)	0.0296 (3)
O4	0.21851 (10)	0.7812 (3)	0.75682 (15)	0.0288 (4)
O1	0.47055 (10)	0.2938 (3)	0.61383 (15)	0.0299 (4)
O2	0.52357 (10)	-0.2127 (2)	0.76811 (15)	0.0276 (3)
F6	0.36236 (8)	0.5180 (2)	0.46534 (10)	0.0270 (2)
C2	0.35521 (12)	0.7605 (3)	0.64298 (17)	0.0179 (4)
H2A	0.4090	0.6954	0.6568	0.021*
H2B	0.3601	0.9306	0.6099	0.021*
F1	0.58654 (8)	0.0785 (3)	0.53391 (11)	0.0347 (3)
C1	0.60738 (12)	0.2305 (3)	0.72558 (17)	0.0191 (4)
H1A	0.6163	0.3964	0.7606	0.023*
H1B	0.6595	0.1547	0.7099	0.023*
F8	0.34007 (9)	0.5934 (3)	0.83358 (11)	0.0370 (3)

Atomic displacement parameters $(Å^2)$					
	U^{11}	U^{22}	U^{33}		
P 1	0.0220(3)	0.01534(18)	0.0237(3)		

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0220 (3)	0.01534 (18)	0.0237 (3)	0.00100 (16)	-0.0022 (2)	0.00045 (16)
P2	0.0230 (2)	0.01312 (17)	0.0241 (2)	-0.00233 (14)	0.00020 (18)	0.00064 (17)
P4	0.0224 (3)	0.01646 (18)	0.0231 (3)	0.00051 (16)	0.0025 (2)	-0.00196 (17)
P3	0.02080 (19)	0.01297 (17)	0.0229 (2)	-0.00030 (15)	-0.00179 (18)	-0.00083 (16)
F2	0.0438 (7)	0.0267 (6)	0.0335 (7)	-0.0073 (5)	-0.0018 (7)	0.0121 (5)
F3	0.0314 (7)	0.0262 (5)	0.0404 (8)	0.0013 (5)	0.0136 (6)	-0.0029 (5)

supplementary materials

F7	0.0416 (7)	0.0296 (6)	0.0350 (7)	-0.0071 (5)	0.0048 (6)	-0.0159 (6)
F5	0.0312 (7)	0.0256 (6)	0.0403 (9)	0.0045 (5)	-0.0145 (6)	0.0006 (5)
O3	0.0265 (7)	0.0155 (6)	0.0324 (8)	-0.0045 (5)	-0.0004 (6)	-0.0007 (5)
F4	0.0439 (7)	0.0194 (5)	0.0254 (6)	-0.0008 (5)	-0.0078 (5)	0.0019 (4)
O4	0.0233 (7)	0.0256 (6)	0.0376 (10)	0.0014 (5)	0.0074 (8)	-0.0016 (6)
01	0.0227 (8)	0.0269 (6)	0.0402 (10)	0.0032 (6)	-0.0066 (8)	-0.0007 (6)
O2	0.0313 (8)	0.0165 (5)	0.0351 (9)	-0.0070 (5)	-0.0029 (7)	-0.0007 (5)
F6	0.0385 (6)	0.0194 (5)	0.0229 (5)	0.0002 (4)	0.0046 (5)	-0.0021 (4)
C2	0.0173 (9)	0.0131 (6)	0.0231 (11)	-0.0013 (5)	0.0017 (8)	-0.0018 (6)
F1	0.0400 (8)	0.0331 (6)	0.0310 (7)	0.0070 (6)	-0.0023 (5)	-0.0132 (5)
C1	0.0167 (9)	0.0146 (6)	0.0258 (12)	-0.0007 (6)	0.0004 (9)	0.0006 (6)
F8	0.0442 (8)	0.0361 (7)	0.0306 (7)	0.0065 (6)	-0.0010 (6)	0.0119 (5)

Geometric parameters (Å, °)

P1—O1	1.4484 (17)	P4—F7	1.5256 (13)
P1—F2	1.5248 (13)	P4—C2	1.772 (2)
P1—F1	1.5320 (14)	Р3—О3	1.4518 (14)
P1—C1	1.772 (2)	P3—F6	1.5318 (14)
P2—O2	1.4478 (14)	P3—F5	1.5324 (14)
P2—F4	1.5295 (13)	P3—C2	1.777 (2)
P2—F3	1.5296 (14)	C2—H2A	0.9900
P2—C1	1.782 (2)	C2—H2B	0.9900
P4—O4	1.4501 (17)	C1—H1A	0.9900
P4—F8	1.5244 (14)	C1—H1B	0.9900
O1—P1—F2	114.74 (9)	O3—P3—F6	114.55 (8)
O1—P1—F1	113.44 (9)	O3—P3—F5	113.66 (9)
F2—P1—F1	99.99 (9)	F6—P3—F5	99.42 (8)
O1—P1—C1	117.27 (11)	O3—P3—C2	117.73 (10)
F2—P1—C1	104.52 (9)	F6—P3—C2	104.72 (9)
F1—P1—C1	104.97 (8)	F5—P3—C2	104.67 (8)
O2—P2—F4	114.39 (8)	P4—C2—P3	111.53 (10)
O2—P2—F3	114.41 (9)	P4—C2—H2A	109.3
F4—P2—F3	99.31 (8)	P3—C2—H2A	109.3
O2—P2—C1	117.98 (11)	P4—C2—H2B	109.3
F4—P2—C1	104.18 (9)	Р3—С2—Н2В	109.3
F3—P2—C1	104.36 (8)	H2A—C2—H2B	108.0
O4—P4—F8	113.70 (9)	P1—C1—P2	111.93 (11)
O4—P4—F7	114.59 (9)	P1—C1—H1A	109.2
F8—P4—F7	100.04 (9)	P2—C1—H1A	109.2
O4—P4—C2	116.78 (11)	P1—C1—H1B	109.2
F8—P4—C2	105.32 (8)	P2—C1—H1B	109.2
F7—P4—C2	104.58 (9)	H1A—C1—H1B	107.9
O4—P4—C2—P3	-34.20 (13)	O1—P1—C1—P2	34.75 (13)
F8—P4—C2—P3	93.04 (12)	F2—P1—C1—P2	163.05 (10)
F7—P4—C2—P3	-162.01 (10)	F1—P1—C1—P2	-92.20 (12)
O3—P3—C2—P4	-44.90 (14)	O2—P2—C1—P1	48.12 (14)
F6—P3—C2—P4	-173.47 (9)	F4—P2—C1—P1	176.18 (9)
F5—P3—C2—P4	82.42 (12)	F3—P2—C1—P1	-80.12 (12)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C2—H2A…O1	0.99	2.41	3.151 (2)	131
C2— $H2A$ ···O2 ⁱ	0.99	2.47	3.286 (3)	140
C2—H2B····O3 ⁱ	0.99	2.44	3.214 (2)	135
C2—H2B····O1 ⁱ	0.99	2.67	3.428 (2)	134
C2—H2B····F4 ⁱⁱ	0.99	2.76	3.429 (2)	125
C1—H1A···O4 ⁱⁱⁱ	0.99	2.42	3.200 (2)	135
C1—H1A···O2 ⁱ	0.99	2.58	3.286 (2)	128
C1—H1A…F6 ^{iv}	0.99	2.71	3.404 (3)	128
C1—H1B····O3 ^v	0.99	2.46	3.310 (3)	144
$C1$ — $H1B$ ···· $O4^{v}$	0.99	2.56	3.298 (2)	131
Symmetry codes: (i) $x, y+1, z$; (ii) $-x+1, z$	-y+1, z-1/2; (iii) $x+1/2, -y$	x+3/2, z; (iv) $-x+1, -x+1, -x+1,$	-y+1, $z+1/2$; (v) $x+1/2$,	-y+1/2, z.

Hydrogen-bond geometry (Å, °)

